
AVR Interrupts

Kizito NKURIKIYEYEZU, Ph.D.



Limitation of our timer programs
1 #include <avr/io.h>
2 int main(){
3 uint8_t count=0;
4 DDRB |= (1<<PB1)
5 ASSR |= (1<<AS0); //use ext oscillator
6 TCCR0 |= (1<<CS00); //normal mode, no prescaling
7 while(1) {
8 while (! (TIFR & (1<<TOV0))){/*Wait until overflow occurs*/}
9 TIFR |= (1<<TOV0); //clear by writing a one to TOV0

10 count++; //extend counter
11 if((count % 64) == 0){//toggle PB0 every 64 overflows
12 PORTB ^= (1<<PB1);
13 }
14 }
15 }

LISTING 1: This program waste resources by waiting overflow to occur

Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts January 22, 2023 1 / 13



Limitation of our timer programs
What if we are to generate two delays at the same time?

Example: Toggle bit PB.5 every 1s and PB.4 every 0.5s
What if there are some task to be done simultaneously with the timers?

Example: (1) read the contents of port A, process the data, and send them to
port D continuously, (2) toggle bit PB.5 every 1s, and (3) PB.4 every 0.5s.

Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts January 22, 2023 2 / 13



What is an interrupt?
An interrupt is a way for an external (or, sometimes, internal) event to pause
the current processor’s activity, so that it can complete a brief task before
resuming execution where it left

FIG 1. Principle of an interrupt

For example, one can set up the processor so that it is looking for a specific
external event (like a pin going high or a timer over owing) to become true,
while it goes on and performs other tasks.
When these even occur, we stop the current task, handle the event, and
resume back the previous tasks.

Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts January 22, 2023 3 / 13



What is an interrupt?
An interrupt is an exception, a change of the normal progression, or
interruption in the normal flow of program execution.
An interrupt is essentially a hardware generated function call.
Interrupts are caused by both internal and external sources.
An interrupt causes the normal program execution to halt and for the interrupt
service routine (ISR) to be executed.
At the conclusion of the ISR, normal program execution is resumed at the point
where it was last.

In short, with an interrupt , there is no need for the processor to monitor the status
of the devices and events. Instead, the events notify the processor when they occur
by sending an interrupt signal to processor

Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts January 22, 2023 4 / 13



Interrupts vs. polling
1 #include <avr/io.h>
2 int main(void){
3 // Initialization code left out for clarity
4 while (1) {
5 if ((PINB & (1 << SWITCH_PIN)) == NOT_PRESSED ) {
6 // Turn off the Led
7 PORTB |= (1<<LED_PIN); // Set PB1 to HIGH
8 }
9 else {

10 // Turn on the led
11 PORTB &= ~(1<<LED_PIN); // Set PB1 to LOW
12 }
13 }
14 return 0;
15 }

LISTING 2: Polling keeps check if the switch is pressed

Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts January 22, 2023 5 / 13



Interrupt vs. polling
Using polling, the CPU must continually check the device’s status
Using interrupt:

A device will send an interrupt signal when needed.
In response, the CPU will perform an interrupt service routine, and then resume
its normal execution.
Allows low response latency
Determinism (in many cases anyways!). Determinism is the consistency of the
response time

Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts January 22, 2023 6 / 13



Interrupt vs polling
Polling uses a lot of CPU horsepower

checking whether the peripheral is ready or not
Wait until the peripheral is ready (but wait for how long?)
interrupts use the CPU only when work is to be done

Polled code is generally messy and unstructured
big loop with often multiple calls to check and see if peripheral is ready
necessary to keep peripheral from waiting
ISRs concentrate all peripheral code in one place (encapsulation)

Polled code leads to variable latency in servicing peripherals
whether if branches are taken or not, timing can vary
interrupts give highly predictable servicing latencies

Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts January 22, 2023 7 / 13



FIG 2
Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts January 22, 2023 8 / 13



Interrupt service routine
Each interrupt is associated with an interrupt service routine (ISR)
When an interrupt is invoked, the microcontroller runs the interrupt service
routine.
Generally, for every interrupt there is a fixed location in memory that holds the
address of its ISR.
The group of memory locations set aside to hold the addresses of ISRs is
called the interrupt vector
The group of memory locations set aside to hold the addresses of ISRs is
called the interrupt vector
You can find the list of all interrupts vectors of an ATmega128 on its datasheet
on pages 59-60
The datasheet also shows the priority levels of the different interrupts. The
lower the address the higher is the priority level. RESET has the highest
priority, and next is INT0 – the External Interrupt Request 0.

Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts January 22, 2023 9 / 13



TAB 1. Example—Interrupts in ATmega16

Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts January 22, 2023 10 / 13



Types of interrupts
Hardware interrupts

externally generated
frees up CPU from polling

Software interrupts
generated by CPU instruction
on AVR: writing to a pin change interrupt pin configured as output triggers
interrupt used to implement system calls

Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts January 22, 2023 11 / 13



What causes an interrupt an AVR MCU?
Timers —there are at least two interrupts for each time: one for an overflow
and another for the compare match
Interrupts set for external hardware interrupts. For the ATmega128, the
external interrupts are triggered by the INT7:0 pins.
Serial communication interrupts
Serial Peripheral Interface (SPI) interrupts
Analog-to-digital converter (ADC) interrupts
etc

Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts January 22, 2023 12 / 13



Why use an interrupt?
To detect pin changes (eg. rotary encoders, button presses)
Watchdog timer (eg. if nothing happens after 8 seconds, interrupt me)
Timer interrupts - used for comparing/overflowing timers
ADC conversions (analog to digital)
EEPROM ready for use
Flash memory ready

Kizito NKURIKIYEYEZU, Ph.D. AVR Interrupts January 22, 2023 13 / 13


